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Preface

This report summarizes the research on Aggregation in Transportation
Networks conducted by MATHTECH, Inc. under contract DOT-TSC-1232
for the U.S. Department of Transportation. Funding for the work was
provided under Project TARP (OST/TST) with additional support provided
by UMTA. The goals of this study were broadly defined as the identification
of aggregation practices and the development of a framework for studying
these practices. These goals have been accomplished by, (a) conducting a
survey of aggregation practices, (b) formulating an aggregation model,

(c) conducting a computational study, (d) deriving mathematical program-
ming formulations aimed at making steps of the model precise, and

(e) programming and testing a particular algorithm proposed in earlier
MATHTECH research.

A number of people were very helpful in the survey stage of this
project. In particular, thanks are due to William S. Mann, Washington
Council of Governments Transportation Planning Board, Morris J.
Rothenberg, JHK Associates, Bob Dial of UMTA, Raphael Kedar and
Tom Bouve of FRA for the time taken to discuss their aggregation schemes.

Principal consultant on this project was Professor Harold W, Kuhn,
Princeton University, who offered many helpful suggestions throughout the
study. A number of the ideas explored here originated in the MATHTECH
report '"Aggregation in Net work Models for Transportation Planning"
(DOT-TSC-883) by Harold W. Kuhn and Daniel E, Cullen, The research

was guided throughout by Dr., Edwin J. Roberts and Mr, Michael Nienhaus

of TSC and by Mr, Robert Crosby of the Office of the Secretary,
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1. Introduction

This study centers around practices of network aggregation that
exist in transportation planning models and mathematical models which
might improve these practices. Aggregation of networks may involve
either (a) abstraction, as when links or nodes are combined into a single
abstract link or node; or (b) extraction of subnetworks.

In accordance with the defined scope of this project, we have inter-
viewed several users of large transportation networks to determine what
aggregation methods (if any) they employ. The practices encountered were
solely of the extraction type and therefore had similar characteristics. One
of these was chosen for computer simulation and some experimentation done
with parameters., A tentative conclusion is that simple heuristics aimed
at determining the appropriate portion of total demand utilizing the
extracted subnetwork can yield good solutions which rival more sophisti-
cated methods.

Finally, we have attempted to bring some mathematical theory to
bear on the problem of extraction aggregation. Included herein is a
rather detailed analysis of the ''duality gap" of nonlinear programming
and its role in estimating error in the traffic assignment problem. In
addition, we suggest several models for further study and application to
the extraction aggregation process,

The remainder of Part I of this report is organized as follows.
Chapter 2 contains a summary of the aggregation practices encountered in

the survey. These practices have a common structure which is identified



and explained in the form of a very general Extraction Aggregation Model.

This terminology emphasizes that links are extracted from a large network
and retain their basic characteristics, as opposed to being combined into
abstract links. Chapter 3 describes a large scale computational study of
the Extraction Aggregation Model. This study was designed to be realistic
and use actual data so that conclusions could be drawn about the validity of
aggregation practices and thereby the areas where research results are
most needed. Chapter 4 concentrates on theoretical results, especially
with regard to the measurement of aggregation error, and Chapter 5
continues this thrust by posing mathematical programming models aimed
at improving the extraction aggregation process. Both Chapter 4 and
Chapter 5 contain a number of new research problems, and it is the intent
to spur the development of alternative models.

Part IT of this report (under separate cover) defines a new
algorithm (named PATHFIX) for the traffic assignment problem. Program

documentation and the results of several test runs are included.

1-2



2. Survey of Some Aggregation Practices

2.1 Introduction

It is generally conceded that aggregation practices abound in
transportation planning, but that little record is made of just what these
practices are. To partially remedy this situation and provide a framework
for mathematical research, MATHTECH, with the assistance of its
technical monitors, has conducted an ad hoc survey of DOT agencies and
certain other sources in a search for aggregation practices sufficiently well

defined to document. The survey consisted of site visits to the following

groups (by mode):

Mode Group
Highway FHWA, COG, NBS
Rail FRA, NBS, OST/TST-13
Urban Highway UMTA, COG, JHK, NBS
Multimodal Freight OST/TST-13, TSC
Pipeline TSC
Air OST/TPI-10
Water TSC

Note: COG = Washington Council of Governments Transportation
Planning Board.

JHK = JHK and Associates, Alexandria, Virginia



The goal of this survey was not only to record aggregation practices,
but also to choose a prototype for study and analysis. The Appendix by
Harold Kuhn describes the criteria employed in the prototype selection. The
remaining sections detail the aggregation schemes encountered. In presenting
these, we suggest that savings from aggregation of transportation networks are
of two forms. ¥ The first is savings of computational effort (usually computer
time) and the second is savings of space (such as computer storage). If we
assume that the primary purpose of having the network is to simulate flows on
it, then it follows that the computational effort is likely to be proportional to
the time required to compute minimum path trees. For a network of £ links
this is an O({) operation per tree [1]. * If m minimum path trees must be

computed to flow the network, then the time effort, t, takes the form
t~mf . (2.1.1)

The space required, s, is simply proportional to the number of links in

the network:
s~f. (2.1.2)

We will use (2.1.1) and (2. 1. 2) to estimate the potential savings of the

aggregation practices discussed.

2.2 Shirley Highway Dedicated Lane Study

The Shirley Highway is 195 south from Washington, D. C. and is
the primary artery for Virginia commuters who work in the District (see

Figure 2-1). What was formally the median strip is now two limited-

* Another very important savings, not evident in these examples, is that of
data collection.

+ For dense networks [ = nZ where n is the number of nodes. Transporta-
tion networks, however, are very sparse.



access, dedicated lanes from just south of the Capitol Beltway to the

north end of the 14th Street Bridge. These (reversible) lanes are available

only to buses and four person car pools. Furthermore, while buses

may use all access ramps, as of November 1975, the four person car pools
could only use certain ones. The situation at that time is shown in Figure 2-2.
JHK and Associates of Alexandria, Virginia, conducted a study
(Contract DOT-FH-11-8242) in 1976 to determine whether allowing car
pools to use the additional ramps and/or reducing the required size of a
car pool from four persons to three would overcrowd the dedicated lanes.
The results of their study are in reference[ 2 ],
As a first step in their analysis, JHK performed a traffic
assignment procedure to determine traffic flows on major arteries in
the a. m. rush. Although their study consisted of many other important
aspects, it is just the traffic assignment procedure and the preceding

aggregation which we consider here. Following are the steps of the

process:
1. JHK obtained trip tables for the a.m. rush period
and the COG network of Metropolitan Washington,

2. The study area consisted of the Virginia suburbs and

the downtown part of the District., For this area the
COG network consists of approximately 9, 000 links,
3,000 nodes and 700 zone centroids. From this

the network shown in Figure 2-1 was extracted.

(The dedicated lane was ignored in this network. )
Constant travel times were assigned to the extracted

links.
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Bl = 14th Street Bridge
B2 = Arlington Memorial Bridge
195 B3 = Roosevelt Memorial Bridge
B4 = Key Bridge
I
Figure 2-1: Aggregated Network of Dedicated Lane Study
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(Buses Only)

= Access/Exit Points

Figure 2-2: Dedicated Lanes - Allowed
Accesses and Exits November 1975
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3. The 700 zones were aggregated by hand to 42 and,
in effect, the aggregate trip demands were assigned to
access nodes (e.g., interchanges) on the extracted
network. Thus the access nodes became pseudo origins
and destinations.

4. The aggregated trips were assigned to the extracted

network by all-or-nothing assignment.

After step 4 percentages of trips on the extracted network were diverted
to the dedicated lane based on diversion data obtained in an earlier NBS
survey [3].

Although we have only sketched the procedure, it is clear that
the aggregation had a2 major impact on the study results, All flows obtained
for the dedicated lane were percentages of flows on the extracted network
which were directly influenced by the zonal aggregation. Furthermore,
while we have stated them as separate steps, there was obviously some
delicate interplay (undocumented) between the choice of links to extract =
(step 2) and the zonal aggregation (step 3). As an example note that the
aggregation (Figure 2-1) forces all trips to the Wisconsin Avenue area
(Georgetown) to use Key Bridge.

Now let t be the time required to flow the disaggregated (COG)
network and tA be the time required to flow the aggregated network of

Figure 2-1. Thus, from (2.1.1), we have the formulas:

2-6



D _700-9,000) ¢ 4

tA 42- (1, 000)
and from (2.1.2)

D . 9000 -

S A -~ 1,000

Hence the potential savings is between two and three orders of magnitude

with respect to time and about one with respect to space.

2.3 Dial's Origin Aggregation

Bob Dial of UMTA has an aggregation scheme in an experimental
traffic assignment code which is designed to work in conjunction with
sub-area focusing. The test networks are very similar to typical urban
highway networks, the chief difference being that points of origin and
destination are at actual network nodes; there are no centroids.

The aggregation scheme (see Figure 2-3) is as follows:

1. A network and trip table are assumed given.

2. The user identifies two types of nodes: (i) candidate

district centers and (ii) candidate super district centers.

3. The user also identifies a contiguous subset of the network

as being the focus area (Al) of interest in which all network
detail is to be preserved. He may also identify a nearby

area (A2), usually a "ring'" about Al,
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Figure 2-3: Dial's Origin Aggregation
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4. The code then assigns every origin node in area
A2 to some czndidate district center. That is, the
trips from the origin node are treated as being from
the district center; the origin node remains in the
network just as a node.

5. Similarly, the origin nodes not in Al or A2 are
assigned to super district nodes.

6. An equilibrium assignment of trips from the new

origins to the destinations is made,

The assignment of origin nodes to district or superdistrict nodes
is done by finding the nearest such in terms of link lengths (not travel
times). Note also that candidate centers to which no origins are assigned
are treated just as nodes in the assignment process.

This scheme has shown promise when comparison is made against
an equilibrium flow obtained without the origin aggregation. The only
link flows considered in this comparison are those in area Al,

Dial makes the point that this aggregation can be thought of as
transforming a square (say) OD matrix to a rectangular one. Since the
assignment process consists of constructing minimum spanning trees
from each origin, there would be negligible savings by aggregation of
destinations in the same manner. Our measure of time savings (2.1,1)
is in agreement with this observation. Since links are not deleted from
the network, the reduction is just in the quantity m in our formula.

There are no space savings since the entire network is retained.
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2.4 Wilson's Load Node Concept

The dissertation of Wilson [4] and the subsequent paper by Wilson,
Matthias and Betz [5] presents an aggregation method similar in spirit
to the two already discussed. The idea, intended for traffic assignment
for urban networks, is to remove all zone centroids and centroid connectors.
Trip demands to and from each zone are ''loaded' on nearby nodes.
Figure 2-4 (from [4]) gives an illustration of maximum potential savings.
The idea is facilitated by the fact that zone boundaries are usually streets.
Wilson mentions two methods f or implementing the idea. One
is to redefine zones so that actual network nodes are near the centers
and hence can play the role of centroids. This concept, however,
requires a fundamental change in the trip generation process and was
not pursued. The method employed was to simply transform the trip
table so that all trips originate and end at network nodes. The trips
originating or terminating at a zone centroid were assigned to nodes
on the zone boundaries in inverse proportion to the (straight line)
distances from the centroid to the nodes. (For further details on how
irregular zones, e.g., those not bounded by streets, were handled,
see the references.) One important difference between the two methods
is illustrated by Figure 2-5. In the zone centroid method trips between
adjacent zones often are assigned just to the centroid connectors. This
cannot occur with the load node method. Wilson argues that, with respect
to adjacent zone trips between corners of the zones, the load node concept

is more realistic.
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Figure 2-5: Adjacent Zone Trip Assignment - Zone Centroid vs. Load Node



The load node concept was applied to the Metropolitan Phoenix
network for 1990. The changes in network detail are shown in Table 2-1.

Using the formulas (2.1.1) and (2.1.2) we obtain

t

D _ 635 (10000) .

_tz = 736 (3994) - 27
and

°p . 10000 . s

s, 3334

(were the subscripts D and A are as before).
Wilson estimates time savings of 40% - 60% in agreement with
the above ratio, To estimate differences between link volumes obtained

by the two methods he derives the regression formula (for daily trip

assignment)
vp = -=.922 + 1.01 Va
where
Va = link volume (in thousands) obtained using the
aggregated method (load node)
vp = link volume (in thousands) obtained using the

disaggregated method (zone centroid).



Load-Node Zone Centroid

Concept Concept % Change
Trip Origins or
Destinations 736 635 +15.9
Other Nodes 259 3120 -94.9
Total Nodes 995 3755 -73.4
Total Links 3334 10000 -66.8

Table 2-1: Comparison of Network Detail for Phoenix Network



Thus the load node method yielded an increase of about 900 trips per day
on the individual links, As mentioned earlier, this increase is primarily
due to adjacent zone trips which are assigned (in Wilson's method) to

network links rather than to centroid connectors.

2.5 Mann's Long Trip/Short Trip Aggregation

Bill Mann, Chief of Systems Planning for the COG (Washington,
D. C.) Transportation Planning Board, has devised a dynamic aggregation
of centroids which shows promise of substantially reducing traffic
assignment costs for their network.

The COG zone level network consists of approximately 18000
links, 5000 nodes and 1207 zone centroids. A less detailed district level
network of major arterials only is also available. It has 1200 links, 700
nodes and 185 district centroids. Each district is thus composed of
about 6 or 7 zones on the average. Mann's aggregation scheme is to
superimpose the district centroids on the zone network, assigning
""long' trips on shortest paths between district centroids and "short"
trips between zone centroids. The cutoff between short trips and long
trips is an input parameter (say, 20 minutes).

Figure 2-6 is a flowchart of the procedure. Note that it is an
incremental method. In the aggregated loop, the district trip table
used is, in effect, the summed zone trip table. The potential savings
comes from the fact that just one long path is constructed for all zones
in one district to all zones in another district. In addition, in the
disaggregated loop, the minimum path trees do not have to ""reach' past

those zones nearby. It is not possible to apply the formula (2.1.1) except



Inputs - Zone Network, District and Zone Centroids,
Zone trip table, T = Parameter defining long
trips and 1. = Parameter indicating when to
adjust link travel times.

Long Trip (Aggregated) Loop

== Select District Dk

Construct Min Time Paths to Dj

If min time < T save the D, to Dj trips

k

Otherwise load the Dk to D. trips on min path and zero
the entries in the zone trip table

If k is a multiple of L update link travel times

— k = k+1

Short Trip (Disaggregated) Loop
= Select Zone Zk
Construct Min Paths to Zj for which trip table entry > 0
Load Zk to Zj trips

If k multiple of L update link travel times

L— k = k+1

Figure 2-6: Long Trip/Short Trip Aggregation



on an average basis. To solve the problem at the detailed zone level

th ~ (1207) - (10000).
Using Mann's procedure, 185 minimum path trees are constructed on
the full network. If about half of these result in actual loadings and if
trees built at the zone level need span only 10% of the network (i.e., just
to links in nearby districts),

ty ~ (185) . (10000) + (600) - (1000).

Therefore

tB L5,
LN

Space savings do not exist because the entire network is used.
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2.6 Aggregation in a Railway Study

As a final example of the type of aggregation being discussed here,
we consider a railway study being conducted at FRA by Tom Bouvé,
Raphael Kedar and Carl Fisher,

The study is concerned with measuring the ""circuity' of the rail
freight system in the United States for the year 1974. Circuity, in this
instance, is defined as

Total number of freight ton miles actually traveled
Minimum number of freight ton miles needed

Circuity

The denominator in this expression is obtained, of course, by assuming
all shipments are along minimum paths. While one might expect that the
above ratio would be near one, in actuality it probably is not because of
laws regarding how private railroads may bill customers for shipments.
As a simple example, suppose a private railroad can send a single ship-
ment over one of two routes., If the allowed charge for the shipment is
independent of route, the railroad may use the longer route because their
revenue is directly proportional to the fraction of total trip length on track
owned by the railroad. See Figure 2-7.

A typical portion of the FRA rail network is shown in Figure 2-8(a).
There are three types of nodes: junctions, centroids and dummy nodes.
Junctions are points at which two or more tracks intersect, Centroids are
nodes which represent origins or destinations (one station or an aggrega-
tion of several) and dummy nodes represent only the separation of centroid
nodes. In the circuity study, the FRA personnel have aggregated to a

""'segment level" network as shown in Figure 2-8(b). The links (segments)



Shortest Route mmm——s

# Destination

Origin

Route Used sy

1’ XZ = Track owned by railroad X
1’ Y2 = Track owned by railroad Y
X2 Xl
Assume ¥ 3¥, X[+ Y,
Circuity = —;f i i?

Figure 2-7: Example of Circuity
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Centroid Dummy Centroid
Junction Junction
(a)
(b)

Figure 2-8: Segment Aggregation of FRA Network



of the aggregated network connect junction nodes; there are no centroids
or dummy nodes., The trip table which accompanies the segment level
network is constructed by aggregation of the centroid demands to the
nearest junction nodes (with yards).

This aggregation scheme, then, closely agrees in spirit with that
of Dial. Here the ""centers' are the junction nodes which have railyards.

To estimate the potential savings by the formulas, we have the approximate

values
my = 16000 A = 20000
m, = 8800 A, = 4000 .
Therefore
b _ 16000 - (20000) . 5
t, - 8800 - (4000)
and
S
D,
A
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2.7 Summary

The previous sections describe different aggregation schemes
employed by different people working on different problems, We submit,
however, that a common pattern exists which includes several of the schemes,.

In this section we will describe this pattern, which we call extraction aggre-

gation, and how it encompasses the schemes of section 2.2 and 2. 4.

In all of the methods encountered, there exists an underlying detailed
network and associated trip table. These, then, we take as given, For
reasons of computational effort and/or space, the network is aggregated
prior to determining flows, Therefore, we assume that flowing at least
part of the network is the objective. The centroid aggregation pattern is

summarized as follows:

1. Given - A network and trip table.
2. Identify - Links of interest for which flows are required. ’
3. Extract - Some connected subset of the network which

contains the links identified in step 2.

4., Select - Nodes of the extracted network which can serve
as pseudo centroids,

5. Transfer - The original trip table to the extracted network
using the pseudo centroids.

6. Flow - The extracted network using the trip table
constructed in step 5.

7. Measure - The flows on the links of interest versus the ideal
flows obtainable by flowing the entire network.

8. Use - The flows obtained on the links of interest, i
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Several comments are in order:

a) The links of interest in step 2 may be all links of the given

network.

b) Similarly, the subnetwork of step 3 may be the entire network,

whether or not (a) holds.

c) Step 7 was inserted as a needed addition; except for experi-

mental work where flows obtained are compared with those
resulting from flowing the entire network, this step does not
exist in practice.

Table 2.2 shows how the practices described in sections 2. 2 through
2,5 relate to the steps of extraction aggregation. Table 2.3 relates the
railway aggregation to the same steps.

Despite the commonality suggested by the extraction aggregation
pattern, it is incomplete. Part of this has been mentioned above - the lack
of step 7, measurement. Just as important is the need for feedback in the
aggregation process (see Figure 2.9). While it is difficult to imagine a
perfect convergent process such as suggested by the flow chart of Figure 2.9,
this is where mathematical attention should focus. Obviously, many questions
can be raised. One such question is suggested by the flow chart: Where

should the corrective portion of the loop begin?
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Aggregation Steps

FRA Circuity Study

i. Given Network FRA Network

2. Identify Links of Interest All Links

3. Extract Subnetwork Entire Network (Segments)
4, Select Pseudo Centroids Nodes with Yards

5. Transfer Trip Table Near Yard

6. Flow Subnetwork All-or-Nothing

Table 2-3: Aggregation in a Railway Study
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1. Given Network and Trip Table
Y
{ 2. Identify Links of Interest
3. Extract Subnetwork

Y

——>' 4, Select

Pseudo-Centroids

Y

——3| 5, Transfer

Trip Table to Subnetwork

Y

6., Flow

Subnetwork

7. Measure

8. Use

Figure 2-9. Extraction Aggregation with Feedback
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APPENDIX
CRITERIA FOR PROTOTYPE STUDY
Harold W. Kuhn

In our search for an application, we formulated a set of criteria
that we considered to be most important for the choice of this study.
By having these criteria explicitly stated, we brought a degree of
consistency to our investigation of the applications that were proposed.
These were stated as a set of questions to be put regarding each candidate
for the study. These questions were organized into five subareas. Some
representative answers from our preliminary investigations have been

given to make the intent of the questions clearer.

1. Decision Goals

a. Does the network application have one or more clearly
defined decision goals?

Example: The various ''dedicated-lane'' or ''special-lane

programs proposed or underway have as their objective the

promotion of bus travel or car-pooling to cut urban traffic

and air pollution,

b. Can the elements that enter these decision goals be
quantified?

Example: Some measures that have been suggested for the

''special-lane'' programs are: vehicle-miles on the highway,

bus ridership, number of accidents, travel times, smog

abatement,



2. Mathematical Model

a. Does one of the transportation network models (e.g.,
Hitchcock-Koopmans problem, shortest path, traffic
assignment, equilibrium) appear as an essential part
of evaluating the decision goals?

Example: In almost all of the applications considered, some

traffic assignment model is used to describe or predict traffic

flow under different conditions, For the "special-lane'!

problem, the measures of the decision goals can be connected

directly to these flows,

b. Is computational experience available for this network
model on this application?

Example: For the models of Debanne at the University of

Ottawa used to study pipeline expansion, considerable computational

experience seems to be available.

3. Network

a. Does a non-trivial network appear as an essential feature
of the application?

Example: Of course, the answer to this question must be affirma-
tive. However, it may not be as simple as it seems. For example,
the inland waterway network of the Mississippi is a tree with 3
extra links (one inKentucky and two in the delta). However, the
traffic assignment problem for this "'trivial'' network seems

difficult to handle satisfactorily.



As a second example, the Santa Monica Freeway, which is the subject
of a '"'special-lane'' application is clearly a trivial network but is not
when feeder roads (or some abstraction) is adjoined.

b. Is the network and the relevant characteristics of its
elements available? Is it currently coded or easily
coded for computer treatment? Are the data on the
elements readily available for computer treatment?

Example: Various rail networks seem readily available with

demand data. The inland waterway networks are also

available with very complete data.

c, What is the size of the network?

Example: TSC has given the following estimates of the networks

involved in the study of intercity freight systems: water, 400

links; rail, 3,500 links (NBS aggregated mainline); highway,

4,300 links (Federal aid highways). The number of transportation

zones seems to be of the order of 500.
4, Aggregation

a. Has aggregation been used in the formulation or previous
analysis of the model?

Example: Most rail networks have urban areas highly aggregated

and some station aggregation. The Ottawa pipeline model of

Debanné was highly aggregated before the equilibrium calculation

was done. Most airline analysis has been done on quite small

extracted (and abstracted) networks.



b. If the model has been analyzed in disaggregate form,

is there the possibility of aggregation?
Example: We believe that aggregation is appropriate for macro
goals (such as total vehicle miles) but less so for micro goals

(such as link flows).

5, Future Interest and Implementation
a. Is this an important application with the prospect of
continuing interest in the future?

Example: Many of the applications involve estimating the effect

of various regulatory configurations, a subject which is clearly

of continuing interest. Some applications, such as rail line
abandonment, seem to have had a flurry of activity then interest
waned. Another class of applications which promise an affirmative

answer are the environmental impact studies,

b. What is the time scale of desired implementation of the
analysis?
Ce Is there a likely prospect that aggregation techniques

will facilitate implementation of the analysis?
Example: This question is likely to have an affirmative answer
in those applications for which aggregation will make possible

the investigation of a wide range of parameters and configurations,
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3. Computational Study of Extraction Aggregation

3.1 Introduction

As part of contract DOT-TSC-1232, MATHTECH has conducted
a computational study of the aggregation scheme described in Chapter 2
(Figure 2-9), The objective of this study was to provide insight to the
following questions:
(a) How good are aggregation practices? That is,
how much faith can be placed in the results of
studies where aggregation is done in an ad hoc
and heuristic manner?
(b) Are some parts of the aggregation process more
critical than others with respect to yielding
correct solutions?
(c) Can the tools of nonlinear programming (Chapter 4)
be employed in the MEASURE step to bound aggrega-
tion error?
(d) Are actual computational savings through aggregation

in agreement with the formulas of Chapter 2°?

No single study can answer these questions completely, of course,
but to make the conclusions as believable as possible, MATHTECH and
the technical monitors agreed that the study should center around a large,
realistic network and that it should capture as many elements as possible
of an actual aggregation practice. For these reasons the Shirley study

described in Section 2.2 was chosen as prototype. It was not possible, or
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necessary, to duplicate the JHK aggregation exactly. At every step
(Figure 2-9) of the process it was essential that exceptions to their
scheme be taken. There were many reasons for these exceptions, but
the two most prevalent were (a) computational feasibility and (b) missing
or incomplete data.

In normal transportation studies the calculated flows of a network
model are measured (calibrated) against observed network flows. For
this study we have chosen as a benchmark the flows obtained on the given
(disaggregated) network using the computer code TRAFFIC [ 1] developed
at the University of Montreal. This code calculates flows for a given
network and trip table according to Wardrop's user-equilibrium
principle [2]. Implicitly then, the aggregation scheme yields '"good"
results if the resulting flows on the links of interest (Figure 2-9) agree
closely with the benchmark link flows. While this obvious criteria may
be sufficient to claim a scheme is '"good, " it is not necessary if, for
example, all that is desired are gross network measures (total vehicle
miles, etc.) as might be required in a pollution study.

In the following sections descriptions of the implemented aggrega-
tion schemes are given. The final section summarizes conclusions of the

study.

3.2 Given Network and Trip Table

The Washington Council of Governments (COG) Transportation
Planning Board kindly provided their zone-level highway network for 1972,
The network has approximately 19, 000 links and 6, 000 nodes including 1, 207

centroids. While this could have been the chosen network, it would have

3-2



e

required excessive computer storage and costs in establishing benchmark
flows using TRAFFIC, The reduction to more manageable size (itself an
aggregation) was accomplished by deletion of all COG links for which both
origin and destination nodes lie in the state of Maryland. The resulting
Virginia plus D. C. network, which was chosen as the given network, had
9386 links and 3027 nodes including 700 centroids.

COG also provided a trip table based on 1968 data which represented
home-to-work trips in the D. C. metropolitan area. Components of the
trip table for trips from or to Maryland centroids were deleted and the
remaining ones were '"factored' to reflect all peak hour trips in the
Virginia-D. C. area. This adjustment of the data was based on a COG
study [3] on estimating peak hour traffic. The resulting trip table had
109, 706 trips which, according to COG experts, approximated the number
of peak hour trips in the area.

(In the JHK study the trip table for the subnetwork was constructed
from data in a previous NBS study of the Shirley Highway. Their data base
indicated 30, 000 vehicles crossing a cordon line in northern Virginia. From
this a trip table of 10, 000 trips, which were assumed to use the major
Virginia arteries, was developed. While this was made available to
MATHTECH in both aggregated and disaggregated form, it was not used
because to do so would involve making an unwarranted assumption that all
trips in the disaggregated trip table used the subnetwork. As explained in
the summary, the computational results show that the aggregation results

are very sensitive to this transfer step.)



3.3 Links of Interest and Subnetwork

In the Shirley study the links of interest were the major arteries
of Virginia. These and major streets of D. C. formed the extracted sub-
network. A precise description was provided by JHK.

After studying the JHK subnetwork, we decided that, for the
purposes of the MATHTECH research, it was unnecessarily large, and
it was incomplete. To reduce the size, "outlying subtrees' were
eliminated from the JHK subnetwork., This term is best explained
graphically. In Figure 3-1(a) a sketch illustrates the JHK subnetwork
detail on 195 south of the Capital Beltway. This portion of the subnetwork
is a subtree which was eliminated in the MATHTECH subnetwork [see
part (b) of the figure]. The justification, other than computational savings,
is that on the subtree the paths between nodes are unique.

The JHK subnetwork was incomplete in the sense that certain links
which seemed absolutely essential were omitted. The most obvious
example is the Theodore Roosevelt Memorial Bridge, which JHK considered
to be unimportant in the Shirley study, but which seemed necessary for the
more general MATHTECH aggregation research., This issue was resolved
by including any links that were part of shortest (uncongested) time paths
between the nodes of the subnetwork,

In summary, the extracted subnetwork was guided by the JHK sub-
network but modified substantially in detail as judgement dictated. The
result was a network of 228 nodes and 483 links. (The subnetwork did not
include any centroids or centroid connectors of the given network.) A

rough sketch, with major arteries identified, is in Figure 3-2.
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Figure 3-1: Elimination of an Outlying Subtree
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Capital Beltway
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Figure 3-2: Sketch of Subnetwork
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3.4 Selection of Pseudo-Centroids

The JHK study had 42 nodes of the subnetwork designated as
pseudo-centroids. In the MATHTECH subnetwork there were only 28
because of the elimination of outlying subtrees described in the previous
section. In Figure 3-1(a), for example, the subtree had seven pseudo-
centroids, one at each ''tip'"' of the subtree., With elimination of this
subtree, the single node shown at the intersection of I95 and the Beltway

became a pseudo-centroid.

3.5 Transfer of the Trip Table

The construction of an aggregated trip table from the disaggre-
gated trip table is, we feel, the most critical step of the aggregation
process if the subnetwork and pseudo-centroids are fixed. As discussed in
Section 3.2, this problem was solved in the Shirley study by first making
the decision of what trips would use the subnetwork, independent of the
flowing of the subnetwork. Thus the two trip tables totaled the same.
Similarly, the other aggregation schemes of Chapter 2 were involved with
the transfer of an entire trip table. More generally, the aggregation process
requires some portion of the full trip table transferred to the subnetwork.

In the computational study a simple automated heuristic was
employed for the trip transfer. First, each original centroid i was
assigned to one of the 28 pseudo-centroids, A, based on the JHK
aggregation. A minimum (uncongested travel time) pathtree was built
from centroid i until Ai became labeled. If centroid j was part of the
minimum path tree so constructed, then the i to j trips were not

included in the aggregated trip table, Otherwise the i to j trips were
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assumed to originate at Ai and terminate at Aj' The process was
repeated for all i, Thus trips became part of the aggregated trip table
if and only if the uncongested travel time from an origin to its (assigned)

pseudo-centroid was less than the travel time to the destination.

3.6 Flowing the Subnetwork and Measuring

The TRAFFIC code was used to flow the subnetwork and obtain
approximate user-equilibrium flows.

To measure the results using the theory of Chapter 4, it was
necessary to construct a flow pattern for the entire given network, This
was done by assigning trips that were not part of the aggregated trip
table to the minimum paths constructed in the transfer step (see the
previous section)., Also, trips of the aggregated network were assigned
to the minimum paths between the centroids and the pseudo-centroids as
defined in the transfer step. This process of constructing a full set of
flows for the entire network is referred to as "'lifting" the aggregated
solution, or as '"disaggregating'' the solution. Figure 3-3 depicts the
lifting process. Trips le and T13, from centroid 1 to centroids 2
and 3, are assigned to the links of the minimum path tree built from
centroid 1. Also, the le trips were assigned to the minimum path from
A2 to centroid 2,

The results of the aggregation as compared with the benchmark
were, by any measure, very poor. As an example, Table 3-1 shows the
flows on certain key links (all on the Shirley highway) obtained by both
methods. The link volumes are off by factors ranging from 1,42 to 2.08,

the average being 1, 86,
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Ai = Pseudo-centroid
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centroid i.

Figure 3-3: Lifting of Flows to Given Network
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Shirley Highway 1 Assigned | Benchmark | Aggregation | Ratio
(COG Node Nos,) |"Capacity" 2 Volume Volume A/B
C B A

6001 - 6002 3900 3625 5347 1.47
6002 - 5640 3900 3603 6184 1,72
5640 - 5639 5300 3603 6184 1.72
5639 - 5631 3900 4287 8444 1.97
5631 - 5626 3900 5122 7276 1,42
5626 - 5185 4100 5934 11062 1.86
5185 - 5187 4100 6632 12113 1.83
5187 - 5217 4100 6657 13412 2,01
5217 - 5218 4100 6745 14056 2.08
5218 - 5220 4100 8035 18059 2.25
5220 - 5226 4100 4057 11329 2.79
5226 - 5239 4100 5514 9770 1.77
5239 - 5237 4100 5514 9770 1.77
5237 - 2903 5700 8009 11539 1,44
Average 1.86

Notes: 1. Node 6001 is at Capital Beltway and Node 2903 is the
north end of the 14th Street Bridge.

2. The '"capacity' C is the value which appears in the COG
volume delay formula T = Ty (1+0.5 (v/C)4), where

T = Link Travel Time
T0 Uncongested Link Travel Time
V = Link volume.

COG practice is to set this value at approximately 1300
vehicles per lane per hour.

Table 3-1: Flows on Shirley Highway Links (Northbound)



(Column one of this table contains the COG node numbers [from / to] for
each link and column two is the link capacity constant obtained from the
network data. )

Other comparisons are given in Table 3-2, It is well-known that
the user-equilibrium link flows can be obtained by solving a nonlinear
programming problem (the code TRAFFIC uses this approach). In
Chapter 4 we show how to compute the duality gap for this problem and
that it leads to an intuitively appealing measure of how good any feasible
set of flows is with respect to the user-equilibrium objective, Table 3-2
shows the results obtained in the benchmark run and from the aggregation
flows. As before, the aggregation column shows poor results. The
negative lower bound is effectively worthless since zero is an obvious
lower bound.

(Table 3-2 also reflects a weakness in the lower bound. The
benchmark run shows a lower bound of 30% relative error when, in fact,
the objective value is probably within 5% to 10% of the true optimum.

This theoretical point is discussed in Chapter 4.)

Benchmark Aggregation

NLP Objective Value 0.201 X 107 1.3669 X107
b

Lower Bound 0.143 X 10? -4.27 x10°
Relative Duality Gap 30% 412%

als
" . - -
Zero is a trivial lower bound.

Table 3-2: NLP Comparisons of Benchmark with Aggregation
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3.7 Additional Heuristics for the Transfer Step

After obtaining the results described in the previous sections, it
was decided to modify the transfer procedure to try to improve them. Of
particular interest was whether improvement could be obtained by transfer-
ring fewer trips from the original trip table (step 5 of Figure 2-9). It can,
of course, be argued that extraction of the subnetwork and/or selection
of pseudo-centroids (Steps 3 and 4) are at least as important as the
transfer step. We agree that this is true and feel that much research
needs to be done on these steps and their interrelationships.

For the current project, we have limited our computational
experimentation to simple modifications of Steps 4 and 5. For the first
of these, selection of the pseudo-centroids, examination of the data
revealed that in construction of the minimum path trees (Figure 3-3), it
was often the case that the assigned pseudo-centroid Ai for centroid i
was not the first labeled node of the subnetwork, Figure 3-4 demonstrates
that the minimum path from centroid 1 to A1 might contain links which
are part of the subnetwork. Thus the trips originating at centroid 1 are
possibly doubly assigned to the subnetwork, once in flowing it, and again
in lifting flows in the Measure step. While this is not necessarily
incorrect, depending on directions of flow, it seemed reasonable to alter
the pseudo-centroids so that this would not occur. This was done by
defining the pseudo-centroid for centroid i to be the node of the subnet-
work nearest (in the sense of uncongested travel time) to centroid i.
When this was done the number of pseudo-centroids increased to 142 from

the 28 of the prior method,

3-12



Subnetwork

>
n

Pseudo-Centroid Assigned to Centroid i
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""Nearest'" Subnetwork Node to Centroid i

Figure 3-4: Minimum Path Tree on the Subnetwork



The second modification concerned the transfer of fewer trips
from the original trip table to the subnetwork. Recall that in the origina,-l
scheme, trips were not transferred to the subnetwork if the destination
of those trips was nearer the origin than the assigned pseudo-centroid.
Given the new assigned pseudo-centroids defined in the above paragraph,
it is clear that more trips would be transferred if this rule were not
altered. For ease of implementation, the method was to define a para-
meter k( 21) as the number of subnetwork nodes which must be nearer
the origin than the destination in order that those trips may be transferred.
Undoubtedly there are more intuitively appealing ways to accomplish this
important transfer step. (In Chapter 5 some rigorous methods are out-
lined.) It is important to note that, because the lifting of flows to the
full network was not changed from the method described in Section 3-6,
subnetwork links might be included in the alternate routes.

Changing only the value of k, computer runs were made using the
same data base as before. For k = 40, 100, 150 the subnetwork trip
tables contained 69,497, 46,681, and 31,943 trips, corresponding to
63%, 437%, and 297 of the total.

The results of these runs are summarized in Tables 3-3 and 3-4
which compare with Tables 3-1 and 3-2. In addition we have Tables 3-5 and
3-6 which show the results of using the lifted flows from all four aggregation
schemes as an "advance" start in the TRAFFIC code. Normally this code
begins with an "all-or-nothing" assignment, i.e., all trips by minimum

time paths without regard to congestion. It has the provision, however,
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Shirley Highway Be\:\:ll':lr;aerk Aggregation Volumes Ratios
(COG Node Nos) B k = 40 k = 100 k = 150 A1/B AZ/B A3/B
Al AZ A3
6001-6002 3625 5609 6221 5713 1.55 1,72 1.58
6002-5640 3603 5567 6242 5866 1.55 1.73 1.63
5640-5639 3603 5567 6242 5866 1.55 1.73 1.63
5639-5631 4287 7484 7290 6992 1.75 1.70 1,63
5631-5626 5122 7278 7825 8319 1. 42 1.53 1.62
5626-5185 5934 11355 11068 10631 1.91 1.87 1.79
5185-5187 6632 12108 11844 11581 1,83 1.79 1.75
5187-5217 6657 13838 13197 12604 2.08 1.98 1.89
5217-5218 6745 14242 13550 12931 2,11 2,01 1.92
5218-5220 8035 13631 13297 12558 1.70 1. 65 1,56
5220-5226 4057 8256 7667 7276 2.04 1,89 1.79
5226-5239 5514 7967 7473 7175 1.44 1. 36 1.30
5239-5237 5514 7967 7473 7175 1.44 1.36 1.30
5237-2903 8009 12070 10151 9410 1.51 1.27 1.17
Averages 1.71 1. 69 1.61

Note: Node 6001 is at Capital Beltway and Node 2903 is the north

end of the 14Lh Street Bridge

Table 3-3:

Flows on Shirley Highway Links (Northbound)
(Continued)




Aggregation Results

Benchmark
k = 40 k = 100 k - 150
NLP Objective Value 0.201 X 1(;9 0.645 x 107 0.355 x 107 0.300 x 107
lLower Bound 0.143 x 10" 1545 x10% | -0.442x107% | -0.255 x 10%%
Relative Duality Gap 30% 340% * 225% = 185% %

Table 3-4:

* Zero is a trivial lower bound

NLP Comparisons of Benchmark

with Other Aggregations




A Other Aggregations
TRAFFIC | ,Original
ggregatlon | .40 | k=100 | k=150
. 0.371 1.367 0.645 | 0.356 0. 300
Assignment
Iteration 1 0.239 0. 465 0. 343 0.253 0.222
Iteration 2 0.219 0.377 0.275 0.226 0.213

Note:

Table contains NLP objective values/lOg

Table 3-5: Aggregation Solutions as Advance Start for TRAFFIC



Original Other Aggregations
Three Aggregation _ _ _
Benchmark TRAFFIC k=40 k= 100 k=150
[terations Plus 2 TRAFFIC Iterations
Total Vehicle Hours 44,860 61,703 160,583 92,990 51,061 51,573
Total Vehicle Miles 846, 315 847, 288 1,074,638 967,752 911, 048 881, 313
Average MPH 18.87 13.73 6.7 10.4 14.4 17.08
Table 3-6: Gross Measures -- Aggregation versus Benchmark




of starting from any assignment of trips. Since the aggregation schemes
employed can yield an assignment at slightly less cost than the all-or-
nothing assignment, we ran TRAFFIC two iterations starting with the
aggregated solutions. These results are summarized in Tables 3-5 and
3-6. The most impressive results came from gross measures of the
network flows. By gross measures we mean, in particular, Total Vehicle
Hours and Total Vehicle Miles which can be translated, of course, to
Average Miles per Hour. In studies of, say, energy consumption or
environmental impact, such measures may be the only information
required. In Table 3-6, the last aggregation of 31, 934 trips produced

very good results when compared with the benchmark results.

3.8 Conclusions

The evidence presented by these computational experiments leads
us to the following conclusions (cf. the questions raised in Section 3-1):

(2) Our experiments are contrary to the informally reported
experimental results of Dial and Mann. (They are, however, consistent
with the predictions of Chan, et al. [4].) Since the crucial difference in
the aggregation scheme is that the subnetwork does not flow all trips from
the original trip table we must conclude that the extraction of a small
subnetwork can only work well if planners have a priori information
regarding the trip table transfer, The fact that our heuristics got better
as the number of trips became fewer supports the view. In fact, it is
encouraging that the final flowing of 31,934 trips to equilibrium on the
subnetwork* resulted in a significantly better solution than the initial

all-or-nothing solution of TRAFFIC (Table 3-5). This is the first solid

*Recall that the total number of trips is greater than 31,934, by the
structure of the heuristic.
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evidence that an automated aggregation scheme can be made to work,
especially since the heuristic employed is quite crude. More refined
methods such as those discussed in Chapter 4 can be expected to produce
very good results.,

(b) As we have defined extraction aggregation, the critical
parts are (i) the defining of the subnetwork, (ii) selection of pseudo-
centroids, and (iii) transfer of the trip table. Whether an algorithm can
be developed that allows all three of these elements to vary is an open
(and difficult) question. We feel that the correct approach is to first
assume the subnetwork and pseudo-centroids fixed and attempt to make
precise the transfer of trips and, at the same time, refine the tools of
the Measure step so that a good solution can be recognized,

(¢) The '"duality gap' error bound used in the Measure step
has proven to be a2 weak measure of aggregation error, The primary
reason for this is that if, in the lifted solution, some links are heavily
congested then the duality gap will be large unless those link flows are
very near optimal., In other words, a lifted solution may be almost
correct (with respect to the NLP objective value) but if a few congested
links are not near their correct flow values, the duality gap will be
artificially large. This points out, as predicted in earlier MATHTECH
research, that the lifting of flows in the Measure step is absolutely
critical. Crude lifting rules such as those we have employed will tend to
overly congest some links and thereby yield a weak bound.

Despite the weakness of the bound, we should note that it did

improve with the improvement of the aggregation.
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(d) The computational savings through aggregation are
considerable, and the formulas of Chapter 2 give estimates of the
magnitude. In establishing the benchmark, each iteration of TRAFFIC
required 221 seconds of 360/91 CPU time. The original aggregation
scheme led to a subnetwork assignment that required 0.59 CPU seconds
per iteration, also using TRAFFIC. Thus the ratio was 375, From the

formula 2,1.1 we obtain the estimated ratio

t
D _ (585)(9386) _
T, (28)(483) - 406 .

(The number 585 is used for mp because that many centroids of the 700
were actual sources of trips.) Similarly, for the other three aggregations

the estimated ratio is

'b  (585) (9386)

a = (142) (483)

80

and the actual ratio was 221/2.18 = 101.

These are only per iteration estimates based on the fundamental
minimum path calculations. Of more importance are the rough estimates
we obtained for the costs of all steps of the aggregation versus the bench-

mark run, These are summarized by the approximate formulae

Total cost of aggregated assignment

= Cost of transfer + subnetwork flowing

Cost of one iteration of TRAFFIC

and

Cost of measuring lifted flows

Cost of one iteration of TRAFFIC.
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Hence a good aggregation assignment plus measurement to prove
how good it is can be accomplished for the cost of two iterations of
TRAFFIC, Since ten to fifteen TRAFFIC iterations (sometimes more)
are required to achieve good flows for the given problem, the potential
savings are considerable, Furthermore, many transportation planning
groups are currently using just three or four iterations to obtain their
assignments, the constraint being that one such run can cost several

hundred dollars for an urban network.
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4. Bounding Error in the Traffic Assignment Problem

4.1 Introduction

In this chapter we show that various error measures proposed for
the user-equilibrium assignment problem are equivalent., Geometrical
interpretations are given along with some numerical examples. These
results lead to a proposed method for improving bounds and to an

alternative mathematical programming formulation of the problem.

4.2 Problem Formulation and Notation

The user equilibrium model of traffic flow for a given network is

equivalent to the following mathematical programming problem [1].

(P) Min I kaj . (t) dt

c
x ki 0 kj
s.t. B xi = b.1 (flow conservation)
i
x >0 ieD
where (- )k.' - the subscript kj is associated with the
J directed arc from node k to node j.
xij = flow to destination i on arc kj
« _ i
kj X *kj = total flow on arc Kkj
1
B = node - arc incidence matrix
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x = vector of all xll(.

x = vector of all flows to destination i
Cpi (xk.) = time per unit to traverse arc kj when
1N the flow is X assumed convex
O = set of origin nodes
D = set of destination nodes
bi = trip vector for destination i
TL = trip table entry of required flow,
keO, i€D
T = all trips to destination i

To illustrate, consider Figure 4-1., In this case problem (P)

becomes

Min E‘:] 0 ckj (t) dt
s. t. B x5 = byg
B x6 = by
xs, x6 ; 0



2 Trip Table

Figure 4-1: Six Node Network



where

kje {13, 14, 23, 24, 34, 45, 462 = all arcs )
O = 31,2{ D = 25,6f J
13 14 23 24 34 45 46
1 1 1
2 1 1
31 -1 -1 1
B =
4 -1 -1 -1 1 1
5 -1
6 -1 )
[ 5] 6 ] v
T Ty
5 6
T2 T2
b5 = . b6 = 0
0 0
..T5 0
0 -T6
(Note that a slight reduction in problem size results from x26 = 0
and xis = 0 in the flow conservation equations. For simplicity of -

notation we leave these variables in the problem.)
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For ease of exposition we will use the more general formulation
of minimizing a continuously differentiable objective function subject to

linear constraints:

(C) Min £(x)
s. t. Ax = b
x ; 0.

To relate this to problem (P), make the following identifications:

A = a block diagonal matrix with blocks B,
b = vector of bi’
x =

tor of all i.,
vec ka
xkj
> _/ c, . (t) dt.
kj © kj

Furthermore note that the gradient vector of f, V£(x), has components

f(x)

ckj (xkj). Define for any x feasible to (P) the total network time for

all users:

F(x)= EJ ij (xkj)xkj
and for keO, i €D
s;( (x) = minimum time over all paths from
k to i.



Finally, define

s 3 simT.
iep keo KK

S (x)

Total time if all trips are made on

minimum paths (with respect to x).

4.3 Backg round

Although the theoretical solution x* to problem (P) can be shown
to exist, computational procedures such as TRAFFIC calculate only an
approximate solution x because of the excessive size and running time of
real problems., Therefore it is important to compute a lower bound on
the objective value of (P) in order to determine relative error.

By definition a set of flows x is at user-equilibrium if, for each
OD pair, the path costs of utilized paths are equal and not greater than
the cost of paths not used. Therefore the total cost of all shortest paths
must equal the total cost of all paths (equivalently the total cost of all arcs).

In the notation of the previous section,
F(x*) = S(x*). (4-1)

The equation appears first in the paper by Beckman [2] who proved that
the user-equilibrium problem is equivalent to (P). ILater, Murchland [3]

used conjugate duality theory to prove that there is a dual problem to (P)
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which has an optimal objective value equal to the optimal objective

value of (P). Furthermore, for any x satisfying the constraints of (P)
(i.e., feasible to (P)) the objective value, f(x), is bounded below by

the corresponding dual objective value. The difference betweenthese two
values (expressed solely in terms of x) is known as the duality gap, G (x).

Murchland proves that

G (x) F(x) -S(x) 20 (4-2)

hence G (x*) 0 if and only if x* solves (P).

The function G (x) has obvious intuitive appeal, and, in fact, has
been recognized for some time by designers of computer codes as a
measure of how far x is from optimal. For example, it appears as an
output of the UMTA program UROAD [4].

Another common output from programs such as UROAD and
TRAFFIC is the '"rate of change' of f(x) at each iteration. This negative
quantity approaches zero (nonmonotonically) as x approaches x¥*, and is
the directional derivative of f in the direction of movement from one value
of x to the next. In addition, these codes, based on the Frank-Wolfe
algorithm of nonlinear programming, print at each iteration, a lower bound
on the value of the objective function which is often referred as the "Frank-
Wolfe bound, "

It is our purpose here to show that all of these measures -- duality
gap, rate of change, and Frank-Wolfe bound -- are effectively the same.
Furthermore, we will show that G (x) is a convex function with easily com-
puted subderivatives and therefore might itself be useful as an objective

function.



4,4 Proofs of Equivalences

Our results in this section are in terms of problem (C), specialized

when necessary to problem (P) as described earlier.

First we list the steps of the Frank-Wolfe algorithm:

Step 0. Choose x feasible to (C).

Step 1. Solve min Vf(x)y
y

s.t. Ay = b

y 0

v

and call the solution y.
Step 2. Solve min f(Ax+ (1 - Ay)
<Akl
and call the solution A.
Step 3. Replace x by Ax + (1 -~ A)y .

Step 4. Go to 1,

Since f is convex and continuously differentiable, the fundamental

inequality

fxy) 2 £(x,) + VE(x)) (x5 - %) (4-3)

holds for all Xy, X, Thus, in particular

£(x*) 2 f(x) + Vf(x) (x* - x) (4-4)

for any x. Furthermore,



V £(x) x* 2 min Vi(x)y (4-5)

y
s.t. Ay =b
y2 0
Therefore,
f(x*) 2 f(x) - Vix)x + min Vix)y (4-6)

y
s.t. Ay = b

liv
o

y

The right hand side of (4-6) we call the convexity bound. It is

obtained for any feasible x at the expense of solving a linear program.
Note further that the linear program is exactly the subproblem in Step 1
of the Frank-Wolfe algorithm. Thus, while not indigenous to the method,
the convexity bound arises naturally at no additional effort. Now assume

; solves the linear program for a given x so that (4-6) becomes
fx¥) 2 £(x) + £(x)(y - x) (4-7)

The second term is clearly the directional derivative (rate of
change) of f at x in the direction (y - x). Hence the convexity bound is
f (x) plus this (nonpositive) quantity.

To see how the same bound arises from convex duality theory,

we state the Lagrangian dual ¥ [5] of (C) as:

* Murchland used conjugate duality theory. For our purposes
conjugate duality and Lagrangian duality yield the same results.
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(D) Taxf [rnin £(x) - AT (Ax-b) - uTx]

s. t. VEi(x) - ATA cu=0

u 0.

Elimination of u and simplification of the objective yields

max [/\Tb + min £(x) -Vf(x)Tx]
AEY (x) x

where Y(x) = {/\IATA = Vf(x)}

Thus, by the weak duality theorem [5]

f(x*) Z max [ATb + min £(x) - VE(x) Tx].
AEY (x) *

Now, for fixed x, assume Y (x) # ¢. This gives

f(x*) = f(x) - Vf(x)Tx + max Alb.
: AEY (x)

Observe that no assumption of x feasible to (C) was made.
Therefore, for any x for which f and Vf are defined we may

bound f(x*) by solving the linear program

max ATh

s.t. ATA = Vi(x),

assigning a value of - if Y(x) =¢.

4-10

(4-8)

(4-9)

(4-10)

(4-11)



The right hand sides of (4-6) and (4-11) are equal because the

linear program of (4-11) is dual to the one in (4-6) and hence they have

equal objective values,

It remains to relate the convexity bound to G(x). First, note

that F(x) = Vf(x)x for any x feasible to (P). Then consider (4-11) in

the notation of problem (P):

14

< i

i
s.t. Ay - &i < ckj(xkj) _

The objective is separable in i. For fixed i€ D we have the linear
program

Lyl (4-13)

< i
max E_] (/\k - I\J xkj

1A

e Al ol x,
st MetAy oGy (4-14)

Summing the constraints (4-14) over any path, p, from k € O

to i yields

i i
A, -A = Ejep SC (4-15)

Thus, for any k € O, we have the bound

x) (4-16)

i i
/\k_)ti <s
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Furthermore, the objective (4-13) simplifies as follows:
S oah i o0 i 4 i _
& (A /\j) X k€0 Ak ,\i ) Ty (4-17)

by expansion and collection of terms and using the fact that the x;(j are feasible
to (P). Thus, to maximize (4-17) subject to (4-16) let

)\i =0 i€D

A =si(x) k€O, ieD
and, having attained the bound in (4-16), the linear program (4-13) -

(4-14) is solved. Repeating for all i € D solves (4-12). This leads

to

S(x) = max Ab = min Vi(x)y (4-18)
y
s.t. ATAS VE(x) s.t. Ay =
y20.
So we may write (4-6) as
fx¥) 2 f(x) - (Fx) - Sx) (4-19)
= £(x) - G(x) .

In summary, the duality gap, G (x), is the difference between f(x) and
and the convexity bound. Furthermore the directional derivative (rate
of change) arising at each iteration of the Frank-Wolfe algorithm is

the negative of G (x).
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4.5 Geometrical Interpretation

The convexity bound can be interpreted geometrically by
considering simple convex programs in one and two variables. In

one variable consider

min f(x) = xz (4-20)

which has the solution x* = 1, f(x*) = 1, Since vf(x) = 2x, we may
write
G(x) = 2x° - min 2xy = 2x(x-1) (4-21)
1 S <
=Y =3

for-all x ;0. At x =3, f(x) =9 and the bound is -3. In Figure 4-2
this is interpreted as the slope of the tangent to x% at x = 3 times x -7y)
where y (=1) is the solution of the linear program in (4-21).

A two-variable example relates the results of section 4.4 to the
Frank-Wolfe algorithm, The pentagon in Figure 4-3 defines the constraint region
of the problem (C). From the point %, the linear program of Step 1 returns
the extreme point solution y, The line search (Step 2) is conducted along
the line from x to y and yields the next iterate x. The inner product of
Vi (x) with the search direction (y - x) is the negative of G (x) as we
have proven. The inner product is negative, of course, because the
angle between the vectors is obtuse.

The insight gained from these two examples with respect to
problem (P) is that if the links are congested so that the objective

function has a steep slope (Figure 4-2), or if the flow values x are far
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x G(3)=6(3 -1)=12

Figure 4-2.

-4
[
w
b

Geometrical Interpretation of Convexity Bound
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Figure 4-3,

G@x = - f(x)(y-x)

Interpretation of G (x) in the Frank-Wolfe Algorithm



from y (Figure 4-3) then G (x) will be large and the convexity bound
will be weak, In practice, the bound has often proven to be quite weak
for either or both of these reasons. In the aggregation experiments of
described in Chapter 3 this was the case, so much so that the bound was
negative and provided only a small amount of information.

Another outstanding example is the small example in the text by

Potts and Oliver [1, page 96]. Although this example has only three
nodes and five links, the Frank-Wolfe algorithm requires 73 iterations
to produce a bound within 10% of the optimal value (which is, of course,
the best possible bound). This is true despite the fact that the objective
value is within 3% of the optimal value. The difficulty in this case is that
although the xkj values are nearly correct, the links are congested with

large values of ckj (’ﬁtj) and hence large components of Vi(x).

4,6, Improving the Bound

The most obvious suggestion for improving the convexity bound
in the context of the Frank-Wolfe algorithm is illustrated with the one
variable problem. In Figure 4-4 note that a tangent to the curve has been
constructed at the point y, the solution of the linear subproblem. The
maximum of the two tangent lines is itself a convex function which under-
estimates £ (x) and the minimum with respect to 1 SxS34isat x=1.
This yields an improved bound of value 1, which we call the minimax
bound. For this example the bound has been improved to the best possible
value, but in general this need not occur, especially in multivariable
problems. Another possibility is to choose x heuristically and employ

(4-10) and (4-18).
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Figure 4-4, Obtaining the Minimax Bound
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To implement this idea in the Frank-Wolfe algorithm, Step 1 would

be modified as follows:

Step 1! Solve min Vi(x)y
Yy

s.t. Ay=Db

vy=0

and call the solution ;
Solve the linear program
min z
s.t. z=Zf(x)+ Vi) (w - x)
z2ZE(y) + VE(y) (W - Y)
Aw =b
w = 0.
and call the solution value z.
Output the minimax bound z.

Of course, z could be used in a stopping criteria for the algorithm
as the convexity bound often is.

We have tested this idea on one small (four node) traffic
assignment problem. After one Frank-Wolfe iteration, the relative error
in the value of f(x) was 72,58% using the convexity bound and 27.90% using
the minimax bound.

No attempt has yet been made to address the question of how to
solve for z in large problems, but this appears to be an interesting

research problem,



4,7 Minimizing the Gap

Another interesting research problem is to consider G (x) as an
objective and design an algorithm which minimizes it directly to
achieve the optimal set of flows x". The results which follow establish

that this is valid in theory, at least if f(x) is quadratic.

Lemma 1. G(x) is a convex function for all x feasible to (P).
Proof. F(x) is convex under the usual assumptions on c(x). -S(x) is
convex because S5(x) is concave., This is most easily seen from (4-18),
i.e., S(x) is the pointwise minimum of functions linear in y.

Consider now

®") min G(x)

1]
o

s.t. Bx

x' 20 ieD

Lemma 2. x* solves (P') if and only if x* solves (P).
Proof. (P') has optimal value G(x*) = 0. But G(x*) = F(x¥) - S(x*) = 0

if and only if x* is a user equilibrium flow,

In general G(x) is not differentiable but as a proper convex

function it possesses subgradients denoted by 9dG(x).

Lemma 3. The subgradients of G(x) are given by

0G(x) = OF(x) - dS(x)
where
dF(x) = VF(x)
and
dS(x) = {all multipliers of max Alb
AT) < vi(x)
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Proof. The first two equalities are immediate and the third follows

from Theorem 4, page 471 of Lasdon [5].
Lemma 4. If G(x) is differentiable

. 2 —
then 9G(x) = VG(x)= Vi(x) + V" {(x) (x - y)
where y is as defined in Step 1 of the Frank-Wolfe algorithm.

Proof. Follows from Lemma 3 and application of the chain rule.

From a practical point of view, (P') has the disadvantage that
its objective can only be evaluated by the solution of a linear program.
Hence the question of typical line searches (as in Step 2 of the Frank-
Wolfe algorithm) is raised. On the other hand, the second order terms

in Lemma 4 suggest the possibility of improved convergence.
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5. Mathematical Programming and Extraction Aggregation

5.1 Introduction

In this chapter we concentrate on steps 5, 6 and 7 (Chapter 2) of
extraction aggregation. We show how mathematical programming theory
can serve to integrate this portion of the aggregation process and suggest

computational procedures.

5.2 Transfer and Flow by Convex Programming

Steps 5 and 6 of extraction aggregation, transferring the trip table
to the extracted network and flowing the extracted network, can be
merged into a single operation and solved by the methods of convex pro-
gramming. In this section we introduce two models for doing this. First
we make the following assumptions -

Assumption 1 All trips of the original trip table
will use the extracted network.

Assumption 2 The flowing of the extracted network
can be accomplished by solving a
convex program with flow conser-
vation constraints.

Assumption 3 For each centroid of the original
network, there is a known subset
of pseudo centroids to which the
trips can be transferred.

The first assumption is consistent with most practices of Chapter 2.
The second assumes that the problem of step 6 is of the sort usually
found in the traffic assignment literature. The final assumption is that

each centroid to be aggregated can be 'attached' to some subset of



pseudo centroids manually, This was done in Wilson's load-node method
(Section 2.4) and is reasonable for studies such as the Shirley one (Section
2.2) because trips from a given zone would only use a few nearby accesses
of the extracted freeway system. In the methods of Dial and FRA
(Sections 2.3 and 2, 6) the centroids are attached only to the nearest pseudo
centroid. Hence all trips are transferred there. What we propose is
closest to the long trip loop of Mann's method (Section 2.4); that the trans-
fer be made dynamically as part of the flow phase.

Figure 5-1 depicts the idea. Each centroid (Cl, CZ’ C3) is attached
via a pseudo connector directly to pseudo centroids of the extracted
network. We assume that the decision of where to attach these has been

made. With this in mind, we modify steps 5 and 6 of the aggregation

process to be

5!' Attach - Each centroid of the original
network to a subset of the
pseudo centroids
6' Flow - The extracted network including
the original centroids and the
pseudo connectors.
Thus the attach step replaces the transfer step and the transfer of trip
demands occurs as part of the flow step.
Since step 6 is assumed to be a convex program, it is obvious that
step 6' could be a convex program of the same form with fewer links, i.e.,
the deleted links of the network are simply replaced by pseudo connectors.
To make this model complete, it is probably necessary to impede flows

on the pseudo connectors as an (aggregate) simulation of impedances on the

deleted links. Some methods for doing this have been introduced by Chan [1].



Cl’ CZ’ C3 Centroids

o Pseudo=Centroids
—— Links of Original Network
—— Links of Extracted Network

Pseudo-Connectors

Figure 5-1. Attachment of Centroids to Pseudo-Centroids



Formally, we have

(M1) min gly) + £(x)
Y.
(y, %) aly]= o
y 20
x 20
Where
x is a vector of flows on the extracted network
y is a vector of flows on the pseudo connectors
£(-) is a convex (impedance) function (Assumption 2)

of flows on the extracted network

g(+) is a convex (impedance) function of flows on the
pseudo connectors

A is a node-arc incidence matrix

b is a constant vector

(The block diagonal submatrices of A have as many columns as the
number of links in the extracted network plus the number of pseudo centroid
connectors. )

While this is a possible model, it has the disadvantage of having the
same number of centroids as the original network. In terms of the formulas

used in Chapter 2

t ~m f (5.1.1)

s ~f (5.1.2)
the quantity f is reduced (perhaps substantially) but the quantity m is
unchanged. Also, the function g(-) is unknown and must be estimated.

Examples indicate that in some cases, but not all, it can be identically

zZero.
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We now suggest an additional model which attempts to reduce both
m and /{ in the above formulas.

The primary notion is that the flows on pseudo connectors are,
under our assumptions, the components of a trip table (when summed at
each pseudo centroid) for the extracted network. Put another way, if we
knew a correct trip table we could flow just the extracted network. We
emphasize a trip table because under Assumption 1, there are many
trip tables which will induce flows on the extracted network that are the
same as one would obtain by flowing the entire network.

[As 2 numerical example, consider Figure 5.2. The quantities
beside each arc represent '"cost' per unit of flow - these are the constant
1 on all but the center arcs where the values increase as a function of flow.
Assume the optimal solution for the full network is Koy = 6 and Xay = 3.
(This is the case if the objective is the familiar user-equilibrium criteria
for traffic assignment.) For the extracted network, any trip table with
row and column sums as shown will yield the correct flows. ]

The model is

(M2) min f(x) + h(z)

(%, z)

s. t. Bx = T(z)

Dz £ ¢
z 2 0 x20

where

x is a vector of flows on the extracted network

z is a vector of the (unknown) trip table components

for the extracted network
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xkj = flow on link kj

Trip Table
5
1 5 4

a. Full Network

4(x

30)” \@
D,

Trip Table
5 6 2

2 ? 1 ? 6

b. Extracted Network

Figure 5.2. Non-Uniqueness of Trip Table for
the Extracted Network
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B is a node-arc incidence matrix of just the
extracted network

T(-) is a trivial linear transformation that converts
the trip table z to the right hand side of the
flow equations

h(-) a convex impedance function

D, c are a constant matrix and vector that constrain
the trip demands at each pseudo centroid.

The matrix D and the vector ¢ are determined by step 5', e.g.,
in Figure 5. 3b the row and column sums of the trip table are constained.
As with model (M1) we have included an impedance function h(:) which
must be estimated. (It should be thought of as node impedance at the
pseudo centroids.) In some cases it may be identically zero, as before.

Models (M1) and (M2) are quite close, of course, but (M2) will
generally be smaller, i.e., in terms of the quantities m and { in
formulas (5.1.1) and (5. 1. 2).

The question of solving (M1l) or (M2), assuming the functions
g(*) or h(-) are estimated, will now be addressed. We consider just (M2),
but the same ideas could be employed with (M1).

First, we note that (M2) is a linearly constrained convex program
which can be solved by the methods of nonlinear programming -- gradient
projection, reduced gradient, convex simplex, etc. [ 2 ]. Second, we
consider solving the problem iteratively. That is, fix the z variables and
then solve for the x, etc. This is accomplished by projection [ 3 ] into
the space of z variables. This yields a "master" problem in z and a

subproblem in x:

(M2M) min w(z) + h(z)
z
Dz =
z 2
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and

(M2S) w(z) = min f(x)
X
Bx = T(z)
x2 0

This is the method of '""right hand side decomposition'' discussed by
Lasdon [ 4] and Geoffrion [ 3 ]. From the theory presented in these
two references the following results can be proven:

a) w(z) is a convex function

b) Subderivatives of w(z) can easily be obtained from
the multipliers of (M2S).

c) The iterative process of solving (M2M) by tangential
approximation is globally convergent [ 3 ].

Whether the decomposition method of solving (M2M) is more efficient
than a direct attack on (M2) is a question for numerical experimentation.
It will only be successful if the subproblem (M2S) is solved quickly for z fixed.
For highway traffic assignment, this subproblem is well-studied
and many computational procedures exist which take advantage of its special
structure. Génera.lly, these are themselves slow to converge, but our
computational experience shows that if the extracted network is simple
enough the subproblem solutions can be obtained with relative ease.

It is interesting to note that a recent paper by Nguyen [5] utilizes
an important special case of (M2). Nguyen addresses the problem of
constructing a trip table (which is consistent with the user-equilibrium
model discussed in Chapter 4) from data observable on an actual network.
In the notation of the previous chapter, he assumes the travel time )\ki

is known (observed) for ke¢0 and ieD, and then proves that the solution of
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(N) min f(x) - Z A
(x, z) ieO k %k
keD
Ax = T(z)
x 20
where f, A, x, A, O and D are as in Chapter 4 and zki is the

number of trips from keO to ieD,
yields a set of flows and a trip table satisfying the user-equilibrium
principle. Problem (N) relates to problem (M2) by setting h(z) =-2)tki zki :
B=A, D=0andc = 0.
Finally, to measure the effort of solving (M2) versus (M1l) in a
particular case, we again employ the formula (5.1.1). We do this for
the Shirley study (Chapter 2). From the data introduced in Section 2.2,

we have

typ ~ 700 ¢ (3100)

assuming (as seems reasonable) that each centroid is attached to three pseudo

is the t, of Section 2.2

centroids. The quantity t A

M2S

typg ~ 42+ (1000) .
Thus

™M1 = 52,

tM2s

This difference of one to two orders of magnitude is based on
comparing one iteration of M1 vs. M2S. The important question of how

many total iterations there would be is not known.
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5.3 Comparison by Linear Programming

Assuming that flows for the extracted network has been found by
solving a reduced problem, (M1) or (M2), the question of measurement
remains.

In Chapter 4 of this report we derive gross measures of error
which require that feasible flows be known for all links of the network in
question. To employ these then, it is necessary to "lift'" the flows deter-
mined in step 6 to the given network.

This can be accomplished in a number of ways. We mention one here
based on the assumption that (M2) has been solved. This being the case,
the vector z is known.

Flow conservation equations for the links of the network not extracted
in step 3 can be formulated with the pseudo centroids as destinations.

The original trip table must be aggregated by destination in a (non unique)
manner to agree with z, but this is easy to do. Having formulated

these equations, they may be solved for the flows on the remaining network
links. The simple structure of flow conservation equations makes this

easy also. However, completely arbitrary flows will probably not be
desirable as indicated in Chapters 3 and 4 -- overly congested links imply
weak error bounds. One alternative would be to minimize maximum relative
flow (on the individual links) subject to the flow conservation equations.
Intuitively this would tend to spread the flows over the remaining links in

an even fashion and thereby yield a good error bound as discussed in

Chapter 4.



Formally, the model is

[

xl 20
where S - areas not on the subnetwork
L - index of pseudo-centroids
B - arc-node incidence matrix for the arcs in S
3l - trip vectors constructed from z.

. - i f link k,
ck_] capacity of 1i :

This problem is equivalent to a linear program and has the same

structure as the problem posed in Chapter 4 for obtaining the minimax bound.
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